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Abstract: In this article, we are concerned with oscillation of all solutions for a class of variable 

order fractional differential equation of the type  a(t)g(D–
β(t)Y)(t)]′ – b (t) f (∫ (z– t)–β(t)∞

t
Y(z)dz) 

= 0 , for t > 0 where 0 < β(t) < 1 and (D–
β(t)Y) is the Liouville right-sided fractional derivative of 

order β(t) of Y. Using the generalized Riccati transformation technique,we have figured out the 

oscillation criteria for a certain type of variable order nonlinear fractional differential equation and 

a few applications are shared to highlight the results we have established. 
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1. Introduction 
                   

Fractional differential equations hold considerable importance across numerous scientific and 

engineering disciplines, such as electrical networks, control theory, and viscoelasticity. They 

possess extensive application in physics, engineering, biology, and finance for modeling memory 

and hereditary characteristics.There are quite a few books out there that dive into fractional 

derivatives and integrals, like the ones from references [1-5]. 

The oscillation of fractional differential equations was examined in [9–16]. 

In [18], the author explored the oscillatory behavior of a class of fractional differential equation 

with damping. 

(D–
1+αy)(t) – p(t) ( D–

αy)(t) + q(t) f (∫ (v – t)–α∞

t
 y(v)dv ) = 0 , for t > 0                       

                (1.1) 

Where  D–
αy  is the Liouville right-sided fractional derivative of order α ∈ (0, 1) of y. 

In [19], the authors discussed the oscillatory solutions for a class of the fractional differential 

equation. 

[r(t) g(D–
αy)(t)]′ – p(t) f(∫ (s– t)–α∞

t
 y(s)ds) = 0 , for t > 0                      

       (1.2) 

where 0 < α < 1 is a real number, D–
αy is the Liouville right-sided fractional derivative of order α 

of y, r and p are positive continuous functions on [t0, ∞) for  t0 > 0. 
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In this article, we study the oscillatory criteria for the variable order fractional differential equation 

with the type 

                           [a(t) g(D–
β(t)Y)(t)]′ – b(t) f(∫ (z– t)–β(t)∞

t
 Y(z) dz) = 0 , for t > 0                                                              

       (1.3) 

where 0 < β(t) < 1 , (D–
β(t)Y) is the Liouville right-sided fractional derivative of order 𝛽(𝑡) of Y 

defined by  

                             (D–
β(t)Y)(t) = – (

1

Γ(1–β(t))
) 

𝑑

𝑑𝑡
 ∫ (z– t)–β(t)∞

t
 Y(z) dz for t ∈ R+ := (0, ∞),  

here Γ(·) is the gamma function defined by Γ(t) = ∫ 𝑒–𝑧 zt–1∞

t
 dz for t ∈ R+, and the following 

conditions are assumed to hold:  

(A1)  a and b are two nonnegative continuous functions on t ∈ [t0, ∞) for  t0 > 0; 

(A2)  g
−1 ∈ C(R, R) are continuous function with pg−1(p) > 0 for p ≠ 0, and ∃ some positive 

constant α  such that  

         g−1(pq) ≥ α g−1(p) g−1(q) for pq ≠ 0; 

(A3)  f, g : R → R are continuous function with uf(u) > 0,  ug(u) > 0 for u ≠ 0, and ∃ positive 

constants ℓ1, ℓ2 such that  

          f(u)/u ≥ ℓ1, u/g(u) ≥ ℓ2 for all u ≠ 0. 

By a solution of (1.3), we mean a nontrivial function Y ∈ C(R+, R) with ∫ (z – t)–β(t)∞

t
 Y(z) 

dz ∈ C1(R+, R) and a(t) g(D–
β(t)Y)(t) ∈ C1(R+, R) satisfies (1.3) for t > 0. Our attention is 

restricted to those solutions of (1.3) which exist on R+ and satisfy sup {|Y(t)| : t > t*} > 0 

for any t* ≥ 0. A solution Y of (1.3) is said to be oscillatory if it is neither eventually positive 

nor eventually negative. Otherwise it is nonoscillatory.  

 

2. Preliminaries 
 

Definition 2.1: A solution of a differential equation is said to be oscillatory if it has arbitrarily 

many zeros. If all the solutions of an equation  

                          are oscillatory, then the differential equation is said to be oscillatory. 

Definition 2.2 The Liouville right-sided fractional integral of order β(t) > 0 of a function f : R+→ 

R on the half-axis R+ is given by  

                            (I–
β(t)f ) (t) = 

1

Γ(β(t))
 ∫ (z– t)β(t)–1∞

t
 f(z) dz, for  t > 0                                                 

             (2.1) 
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Provided that the right side is point wise defined on R+
, where Γ(·) is the gamma function. 

Definition 2.3 The Liouville right-sided fractional derivative of order β(t) > 0 of a function f : 

R+→ R on the half-axis R+  is given by  

                        (D–
β(t)f) (t) =(– 1)⌈β(t)⌉ 

d⌈β(t)⌉

dt⌈β(t)⌉ (I–
⌈β(t)⌉–β(t)f ) (t)                                                                

            (2.2)                   

                   where ⌈β(t)⌉ : = min {x ∈ I : x ≥ β(t)}, provided that the right side is pointwise defined 

on R+. 

Lemma 2.1 Let Y be a solution of (1.3) and H(t) = ∫ (z– t)–β(t)∞

t
 Y(z) dz,                 

             (2.3) 

                       Then H′ (t) = – Γ(1–β(t))(D–
β(t) Y) (t), for 0 < β(t) < 1, t > 0                                            

                      (2.4) 

Lemma 2.2. If U and V are positive, then mUVm–1 – Um ≤ (m– 1)Vm, m >1                 

               (2.5) 

 

3. Oscillation Results 

Theorem 3.1. Suppose that (A1) – (A3) and ∫ g−1∞

t0
(

1

a(z)
)dz = ∞                                           

               (3.1) 

hold. Moreover, assume that there exists a positive function γ ∈ C1[t0, ∞) such that  

                  lim
t→∞

sup ∫ [ℓ1γ(z)b(z)– 
a(z)(γ ′(𝑧))2

4ℓ2Γ(1–β(t)) γ (z)
]

t

t0
dz = ∞                                                                                             

            (3.2) 

where ℓ1, ℓ2 are defined as in (A3). Then every solution of (1.3) is oscillatory. 

Proof. Assume that Y is a nonoscillatory solution of (1.3). Without loss of generality,  

We can assume that Y is an eventually positive solution of (1.3). Then there exists t1 ∈ [t0, ∞) such 

that  

                  Y(t) > 0 , H(t) > o for t ∈ [t1, ∞)                                                                                    

              (3.3) 
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where H is defined as in (2.3). Therefore, it follows from (1.3) that [a(t) g(D–
β(t)Y)(t)]

′
= b(t) f(H(t)) > 0  

for t ∈ [t1, ∞)                   (3.4) 

 

Thus, a(t) g(D–
β(t)Y)(t) is strictly increasing on [t1, ∞) and is eventually of one sign. Since a(t) > 0 for t ∈ 

[t0, ∞) and (A2), we see that (D–
β(t)Y)(t) is eventually of one sign. We now claim that (D–

β(t)Y)(t) < 0 for t 

∈ [t1, ∞)                                                                                          (3.5) 

If not, then(D–
β(t)Y)(t)  is eventually positive, and there exists t2 ∈ [t1, ∞) such that (D–

β(t)Y)(t) > 0 .Since 

a(t) g(D–
β(t)Y)(t) is strictly increasing  

  on [t1, ∞),  it is clear that a(t) g(D–
β(t)Y)(t) ≥  a(t2) g(D–

β(t)Y)(t2) = d > 0 for t ∈ [t2, ∞).  

 From (2.4), we have  

                    –
H′ (t)

Γ(1–β(t))
 =  (D–

β(t)Y) (t)  

                                ≥  g−1 (
d

a(t)
)  

                                ≥  α  g−1(d) g−1 (
1

a(t)
)  for t ∈ [t2, ∞).                                         

              (3.6) 

We get g–1 (
1

a(t)
)  ≤ –

H′(t)

α g−1(d) Γ(1–β(t))
, for t ∈ [t2, ∞).                                  

              (3.7) 

 

Integrating the above inequality from t2 to t, we have  

                   ∫ g−1 (
1

a(s)
) ds 

t

𝑡2
 ≤– 

H(t)– H(t2)

α g−1(d) Γ(1–β(t))
 

                                             <  
 H(t2)

α g–1 (d) Γ(1–β(t))
  ,  for t ∈ [t2, ∞).                                      

              (3.8) 

Let t → ∞, we see  ∫ g−1 (
1

a(z)
) dz 

∞

t2
 ≤ 

H(t2)

α g−1(d) Γ(1–β(t))
  < ∞.                 

                          (3.9) 

 

This contradicts (3.1). Hence (3.5) holds. 

Define the function w by the Riccati substitution  

    w(t) = γ(t) 
 –  a(t) g(D–

β(t)Y)(t)

H(t)
 , for t ∈ [t1, ∞).                                      

              (3.10) 
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We have w(t) > 0 for t ∈ [t1, ∞). From (3.10), (1.3), (2.4) and (A1)–(A3), it follows that  

       w′(t) = 
 γ(t)

H(t)
 [– a(t) g(D–

β(t)Y)(t)]′+ (
 γ(t)

H(t)
)

′

[– a(t) g(D–
β(t)Y)(t)] 

                    = – γ(t) b(t) 
f(H(t))

H(t)
 + 

γ′(t)H(t)–γ(t)H′(t)

H2(t)
[– a(t) g(D–

β(t)Y)(t)]                   

             

                    = – γ(t) b(t) 
f(H(t))

H(t)
 + 

γ′(t)

γ(t)
 w(t) – 

H′(t)

H(t)
 w(t) 

                    = – γ(t) b(t) 
f(H(t))

H(t)
 + 

γ′(t)

γ(t)
 w(t) – 

Γ(1–β(t))w2(t)

γ(t)a(t)
 

(D–
β(t)Y) (t)   

g(D–
β(t)

Y)(t)   
 

       w′(t)    ≤ – ℓ1 γ(t) b(t) +
γ′(t)

γ(t)
 w(t) – 

ℓ2Γ(1–β(t))

γ(t)a(t)
w2(t).       

           (3.11) 

   Let U(t) = √
ℓ2Γ(1–β(t))

γ(t)a(t)
 w(t) , V(t) = 

1

2
 √

γ(t)a(t)

ℓ2Γ(1–β(t))
  

γ′(t)

γ(t)
  and m = 2                                

From Lemma 2.2 and (3.11) we get  

                       w′(t)   ≤ – ℓ1 γ(t) b(t) + 
a(t) (γ′(t))2

4ℓ2Γ(1–β(t))γ(t)
                                                                 

            (3.12) 

Integrating both sides of the inequality (3.12) from t0 to t, we obtain  

                         ∞ > w(t0) > w(t0) – w(t) 

                                         ≥ ∫ (ℓ1 γ(z)b(z) – 
a(𝑧) (γ′(z))2

4ℓ2Γ(1–β(t))γ(z)
  ) 

t

t0
dz                                               

           (3.13) 

Taking the limit supremum of both sides of the above inequality as t → ∞, we get  

                            lim
t→∞

sup ∫ (ℓ1 γ(z)b(z) –
a(z) (γ′(z))2

4ℓ2Γ(1–β(t))γ(z)
  )

t

t0
dz                                                 

                      (3.14) 

                                   < w(t0) < ∞ 

which contradicts (3.2). The proof is complete. 

Theorem 3.2. Suppose that (A1) – (A3) and ∫ g−1∞

t0
(

1

a(z)
)dz < ∞                                       

            (3.15)  

    hold, g is an increasing function, and that there exists a positive function γ ∈ C1[t0, ∞) such that 

(3.2) holds. 
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    Furthermore, assume that for every constant T ≥ t0, ∫ g–1 (
1

a (t)
∫ b(z)dz

t

T
)

∞

T
dt = ∞.                         

                       (3.16)   

    Then every solution Y of (1.3) is oscillatory or satisfies lim
t→∞

∫ (z– t)−β(t)∞

t0
Y(z) dz = 0. 

Proof. Suppose that Y is a nonoscillatory solution of (1.3). Without loss of generality, assume that 

Y is an eventually positive solution of (1.3). Proceeding as in the proof of Theorem 3.1, there are 

two cases for the sign of (D–
β(t)Y) (t) . The proof when (D–

β(t)Y) (t) is eventually negative is similar 

to that of Theorem 3.1 and hence is omitted. 

Assume that (D–
β(t)Y) (t) is eventually positive. Then there exists t2 ≥ t1 such that (D–

β(t)Y) (t) > 0 

for t ≥ t2.  

From (2.4), we get H′(t) < 0 for t ≥ t2. We get lim
t→∞

H(t) = N ≥ 0 and H(t) ≥ N. We claim that N= 

0.  

 Assume not, i.e., N > 0, then from (A3) we get  

                              [a(t) g(D–
β(t)Y)(t)]′= b(t) f(H(t)) ≥  ℓ1 N b(t) , for t ϵ [t2, ∞]         

              (3.17) 

Integrating both sides of the last inequality from t2 to t, we have  

                              a(t) g(D–
β(t)Y)(t)  ≥ a(t2) (g(D–

β(t)Y)(t2)) + ℓ1 N ∫ b(z)dz
t

t2
  

                                                          > ℓ1 N ∫ b(z)dz
t

t2
 , for t ϵ [t2, ∞].             

            (3.18) 

Hence, from (2.4) & (A2) , we get  

                            – 
H′ (t)

Γ (1−β(t))
 = (D–

β(t)Y)(t) ≥ g−1 (
 ℓ1N ∫ b(z) dz

t

t2

a (t)
)  

                                                                  > α g−1(ℓ1N) g-1 (
∫ b (z) dz

t

t2

a (t)
) for t ϵ [t2, ∞].                          

           (3.19) 

 

Integrating both sides of the last inequality from t2 to t, we obtain 

                        H (t) ≤ H (t2) – α g–1(ℓ1N)  Γ (1 – β(t))  ∫ g−1t

t2
 (

∫ b(z) dz
v

t2

a (v)
) dv,  for t ϵ (t2,∞).          

           (3.20) 
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Letting t → ∞, from (3.16), we get lim
t→∞

H(t)= − ∞. This contradicts H(t) > 0. Therefore, we have N = 0, ie, 

lim
t→∞

H(t)= 0. 

 In view of (2.3), we see that the proof is complete. 

4. Example 

Example 4.1. Consider the variable order fractional differential equation  

 [t1 3⁄  D–

t
2⁄

 Y)(t) ]
′

– t (∫ (z − t)−t
2⁄∞

t
 Y(z) dz) = 0,   for t > 0.                 

     (4.1) 

In (4.1), β(t) =  
t

2
 ,  where 0 < t < 2 ,  a(t) = t1/3,  b(t) = t, and  f(u) = g(u) = u. Take t0 = 1,   ℓ 1 = ℓ 2 = 1. It is 

clear that conditions (A1)–(A3) and (3.1) hold. 

 Furthermore, taking γ(t) = t, we have  

 lim
t→∞

sup ∫ [ℓ1γ(z) b(z)– 
a(z)(γ′ (z))2

4ℓ2Γ(1–β(t)) γ (z)
]

t

t0
 ds = lim

t→∞
sup ∫  [z2 – 

z1 3⁄

4 z Γ
(1–

t
2

)
 
]

t

1
 dz = ∞,    

which shows that (3.2) holds. Therefore, by Theorem 3.1 every solution of (4.1) is oscillatory.  

Example 4.2. Consider the variable order fractional differential equation  

       [t3 2⁄  D–

t
2⁄

 Y)(t) ]
′

– t (∫ (z − t)−t
2⁄∞

t
Y(z) dz) = 0, for t > 0.            

      (4.2) 

In (4.2),  β(t) = 
t

2
 , where 0 < t < 2 , a(t) = t3/2,  b(t) = t, and f(u) = g(u) = u. Take t0 = 1,  ℓ1 = ℓ2 = 1. It is clear 

that conditions (A1)–(A3) and (3.15) hold. 

 Taking γ(t) = t, we have  

 lim
t→∞

sup ∫ [ℓ1γ(z) b(z)– 
a(z)(γ′ (z))2

4ℓ2Γ(1–β(t)) γ (z)
]

t

t0
 dz = lim

t→∞
sup ∫ ( z2 – 

z3 2⁄

4 z Γ
(1–

𝑡
2

)

t

1
 ) dz = ∞.             

which shows that (3.2) holds. 

Furthermore, for every constant T ≥ 1, we have  

∫ g−1∞

T
 (

1

a (t)
 ∫ b (z) dz

t

T
) dt = ∫ (

1

t3 2⁄  ∫ z dz
t

T
)

∞

T
  dt = ∞.       

which shows that (3.16) holds. Therefore, by Theorem 3.2 every solution of (4.2) is oscillatory or satisfies 

lim
t→∞

∫ (z– t)−β(t)∞

t0
 Y(z) dz = 0. 
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5. Conclusion  

This article provides the oscillation criteria of variable order nonlinear fractional differential 

equation together with examples. The conclusion is that if the conditions (3.1),(3.2),(3.15) and 

(3.16) are satisfied, then each solution of the equation (1.3) oscillates. In further research, we aim 

to achieve the intended outcome for the oscillatory behavior of a class of mixed fractional variable 

order differential equation. 
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